目的 研究肿块型肝内胆管癌发生微血管侵犯的影像组学及临床特征,并建立基于机器学习算法的预测模型。方法 回顾性收集2015年1月至2023年2月期间就诊于温州医科大学附属第一医院(75例)和温州医科大学附属第二医院(29例)的肝内胆管癌(ICC)患者资料,提取增强CT的影像组学特征,使用多种机器学习方法进行分析并比较,结合最佳影像组学机器学习方法与临床资料,建立预测模型并进行检验。结果 多种影像组学机器学习方法中,门脉期影像组学特征的朴素贝叶斯分类primed transcription表现相对较好,曲线下面积(AUC)为0.818,结合筛选出的2个C59临床特征(瘤内动脉穿行,CEA>5 ng/mL)建立预测模型,训练组和测试组的AUC分别为0.883和0.891,训练组的敏感度为0.978,特异度为0.656,测试组的敏感度为0.909,特异度为0.700。结论 点击此处基于增强CT影像组学机器学习结合临床资料的模型可用于预测肝内胆管癌的微血管侵犯状态,具有较好的诊断价值。